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The control of stereochemistryR to carbonyls is a long-standing
problem in organic chemistry with a host of solutions based on
chiral auxiliary chemistry.1 More recently, a number of catalytic
asymmetric methods have appeared taking advantage of in situ
generated nucleophiles for direct aldol,2 Mannich,3 halogenation,4

and protonation reactions.5,6 In connection with our work on
nucleophilic carbene-catalyzedumpolungreactions,7 we considered
that our catalytically generated nucleophile complexed enolate may
participate in a range of electrophile trapping/acylation sequences
that would result in chiralR-substituted esters. Herein we disclose
that 2,2-dichloroaldehydes react with phenols in the presence of
chiral triazolinylidene carbenes to formR-chloroesters in good yield
and enantioselectivity.

In our proposed mechanism (Scheme 1), the carbene, generated
upon deprotonation of the azolium salt by base, adds to theR-halo-
aldehyde to formI , which subsequently undergoes an elimination
of HCl to provide azolium enolate. Protonation of this intermediate8

produces an acyl azolium species (III , Scheme 1), which performs
an acylation to provide catalyst turnover. The use of a chiral azolium
salt thus provides entry into a chiral enolate (II in Scheme 1), and
we hypothesized that it should be possible to identify a set of
conditions wherein protonation ofII would afford III with the
stereocenter defined. The subsequent acylation event would close
the catalytic cycle and afford enantioenrichedR-substituted esters.

At the outset of our investigation, we realized the need for three
different reagents in this reaction: (1) a base to sequester the gen-
erated HCl (step 2, Scheme 1), (2) a proton source (step 3, Scheme
1), and (3) an alcohol to undergo acylation, providing theR-halo-
ester and regenerating the catalyst (step 4, Scheme 1). Previous
successful asymmetric enolate protonations5 have used phenol as
a proton source, and phenol has proven to be a competent nucleo-
phile in our acyl azolium chemistry.7f Therefore, we began our
investigations by studying the conversion of1a to its phenyl ester
2a.

The requisite dichloroaldehydes are bench-stable compounds,
easily accessed by treatment of various aldehydes withtert-butyl-
amine and NCS.9 Initial experiments revealed that at least 1 equiv
of base was required. In general, amine bases gave lower enantiose-
lectivities but good yields (entry 1, Table 1). Carbonate bases pro-
vide product, but suffered from low yield or enantiomeric excess

(entries 2 and 3, Table 1). We ultimately chose potassium phen-
oxide, generated in situ from potassium hydride and phenol, for
development as it provided the best combination of yield and enan-
tiomeric excess (entry 4, Table 1). Thus, the phenol/phenoxide com-

Scheme 1. Proposed Synthesis of R-Chloroesters

Table 1. Optimization of Base

entrya base equiv of base yield (%) ee (%)

1 iPr2NEt 1.20 88 74
2 NaHCO3 1.00b 61 88
3 K2CO3 1.20 84 44
4 KH 1.15 75 84
5 KH 1.15c 75 81
6 KH + 3 1.00d 80 92

a All reactions conducted at 0.12 M in PhMe at 23°C. b With 0.18 equiv
of triethylamine.c With 1.15 equiv of 18-crown-6.d With 1.00 equiv of
18-crown-6 and 1.20 equiv of 2,6-dibromo-4-methylphenol (3).

Table 2. Synthesis of R-Haloesters: Substrate Scope

a All reactions conducted at 0.06 M in substrate with 10 equiv of PhOH,
1.2 equiv of3, 1 equiv of KH, and 0.5 equiv of 18-crown-6 in PhMe at 23
°C for 19 h.
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bination fulfills the unique role of base, proton source, and
nucleophile.

Due to the poor solubility of potassium phenoxide in toluene,
we added 18-crown-6, which provided a homogeneous reaction
medium, resulting in similar yield, but a slight decrease in
enantioselectivity (entry 5, Table 1). However, we found that
enantioselectivity varied slightly from run to run, and we speculated
that a modest level of background epimerization was responsible.
To alleviate this problem, we considered buffering the solution by
adding a bulkier, more acidic phenol which would form the base
reservoir. To our gratification, we discovered that the use of 1.2
equiv of 2,6-dibromo-4-methylphenol (3) afforded2a in 92% ee.

Under optimized conditions (1.0 equiv of potassium hydride, 0.5
equiv of 18-crown-6, 1.2 equiv of3, 10 equiv of phenol, 10 mol
% of catalystA, 0.06 M), we obtained2a in 79% yield and 93%
ee (entry 1, Table 2). The transformation is general with regards
to the participating aldehydes, with enantioselectivities ranging from
84 to 93%, and tolerant of diverse functionality including olefins,
ethers, and esters (Table 2). The reaction is currently limited to
aldehydes lackingâ-branching,10 making it complementary to
previously developed ketene methods.11

A distinct advantage of the current approach is the ability to
incorporate a variety of aryl esters into the product (Table 3). The
reaction is fairly independent of phenol pKa (entries 1-4, Table
3). Orthosubstituted phenols participate well only in the presence
of 3 (entries 5-8, Table 3). In the absence of3, 2-methylphenol
affords the corresponding ester in only 15% yield and 42% ee
(achiral catalystB,12 however, provides the product in 83% yield).
These results suggest that steric13 and electronic14 factors prevent
2-methylphenol from functioning efficiently as a base or proton
source, a crucial role that is played by3. Bisorthosubstituted 2,4,6-
trimethylphenol (4) did not afford any of the desired ester (entry
9, Table 3); instead, a 56% yield of the ester derived from3 was
recovered in 65% ee. Control experiments revealed that4 is not a
competent nucleophile in the presence of catalystA, while catalyst
B provides a 30% yield of acylated4.

The R-chloro phenyl ester products may be hydrolyzed to the
acid or reduced with LiAlH4, in both cases with nearly complete
retention of enantioselectivity (eqs 1a and 1c). Alternatively, trans-
esterification may be achieved with Mg(OMe)2, followed by azide15

displacement with inversion to provide the correspondingR-azi-
doester (eq 1b).

In conclusion, we have demonstrated a unique synthesis of
R-chloroesters based on an enantioselective protonation of in situ
generated chiralR-haloenolates. The reaction is robust16 and an
excellent complement to the literature, allowing for the synthesis
of a wide range of phenolic esters. Studies investigating the reaction
of other electrophiles with our catalytically generated enolates are
currently underway.
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Table 3. Reactions of 1a with Substituted Phenols

entrya R
yield
(%)

ee
(%) entrya R

yield
(%)

ee
(%)

1 H 79 93 6 2-chloro 75 91
2 4-methyl 71 89 7 2,6-dichloro 65 82
3 4-methoxy 71 91 8 2,6-dibromo-4-methyl 85 76
4 4-chloro 75 83 9 2,4,6-trimethyl 0 na
5 2-methyl 62 90 10 3,4-dimethyl 80 89

a See footnote in Table 2.
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